If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-575=0
a = 2; b = 2; c = -575;
Δ = b2-4ac
Δ = 22-4·2·(-575)
Δ = 4604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4604}=\sqrt{4*1151}=\sqrt{4}*\sqrt{1151}=2\sqrt{1151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1151}}{2*2}=\frac{-2-2\sqrt{1151}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1151}}{2*2}=\frac{-2+2\sqrt{1151}}{4} $
| 6v+7=-29 | | 3(4+e)=33e= | | 9+2d=6d-3 | | 2-x=2x10 | | 2(x-3)+x=-30 | | -5=16-3y | | -7x^2+24x+5=3x+5 | | 67/9=x+7/9 | | 2y+5÷3=3y-10 | | 11b=47 | | y=-3/4*0+1 | | (4y)=(5y-30) | | x+13.4=32.6 | | 3x+12=2+x | | 14.7-5u=2.2 | | 4(1+6x=124 | | 5(x²+2)=60 | | 4x-7(x+5)+10=3x+5 | | 4x^2+1=23 | | 1/2(10/3n+1)=3/5 | | Y=6x+x | | 6x-27=33-4x | | 25=a/2 | | -4x+2=x^2-3x | | 2.5x-5=2x+1 | | a-32=14 | | 00.9x=-6.3 | | 2x-29=8 | | (4y-10)=138 | | -28/19+n=-43/19 | | 10x=-69 | | y=-3*2-1 |